BASIC CONCEPT OF OOPS:

OBJECTS: is collection of data.

1.CLASSES:

A class is a collection of objects having common features .It is a user defined data types which has data

members as well functions that manipulate these data’s.

2.ABSTRACTION:

It can be defined as the separation of unnecessary details or explanation from system requirements so as to reduce the complexities of understanding requirements.

3.ENCAPTULATION:

It is a mechanism that puts the data and function together. It is the result of hiding implementation details of an object from its user .The object hides its data to de accessed by only those functions which are packed in the class of that object.

Ex : get(), set()

4.POLYMORPHISM:

Polymorphism means having many forms that in a single entity can takes more than one form. Polymorphism is implemented through operator overloading and function overloading.

4.a) Compile time POLYMORPHISM

Override

Class A

{Virtual Murfn();}

Class B:A

{ override Murfn();}

here we need to use virtual keyword , only then w can override.

4.b) Run time POLYMORPHISM

Overload :Same method, but different parameter.

What is Inheritance?
Inheritance is a relationship between classes where one class is the parent class of another. Sometimes people refer to the parent class as a base class, superclass, ancestor, etc.

1. Framework, clr, cls, cts, GAC .

 CLR is a core of .net frame work, native code into machine language was achived by JIT. CLS define the rules to support language integration.

CTS describes how data type are declare, managed and defined.(CTS is subsystem of CLS)

2. Garbage collector manages the allocation and release of memory for your application. Each time you create a new object, the common language runtime allocates memory for the object from the managed heap. As long as address space is available in the managed heap, the runtime continues to allocate space for new objects. Eventually the garbage collector must perform a collection in order to free some memory. When the garbage collector performs a collection, it checks for objects in the managed heap that are no longer being used by the application and performs the necessary operations to reclaim their memory.

3. Anonymous methods are unnamed methods which are implemented where it is called.

4. Delegates allows to create variables that points a method. The variable can be used to invoke the method at any time.

4. Iterator : Sequentially assessing an object without exposing the structure of the object.

best example “for each” loop.

 For Each ColorName in ColorList
 ddlColorList.Items.Add(ColorName)
 Next

 4.a) The for loop executes a statement or a block of statements repeatedly until a specified expression evaluates to false.there is need to specify the loop bounds(minimum or maximum).

The foreach statement repeats a group of embedded statements for each element in an array or an object collection.you do not need to specify the loop bounds minimum or maximum.

int j = 0;

int[] tempArr = new int[] { 0, 1, 2, 3, 5, 8, 13 };
foreach (int i in tempArr)
{
j = j + i ;
}

5.Design pattern, classification, examples : are solution for software design problem we find again and again in software development. Which can be classified into 3 categories 1. structure 2. behavior (Iterator)3. Creational : (singleton).

Pattern are about design interaction between objects.

5. singleton object : ensures only one instance of object will persist in entire application

6. Delegate, types : allows to create variables that points a method. The variables can be used to invoke the methods at any time. Types 1. Single cast 2. Multi cast

Public Delegate Sub MakeDelegate (ByVal PhoneNo As String)

Public Class Customer

 Public FirstName As String

 Public LastName As String

 Public Sub ValidateCustomer (ByVal objDelegate As MakeDelegate, _

 ByVal PhoneNo As String)

 If PhoneNo.StartsWith ("479") Then

 objDelegate.Invoke(PhoneNo)

 End If

 End Sub

End Class

Delegates are used for many purposes. Most common usage of Delegates is listed below:

• For achieving parallel processing by establishing thread communication

• For defining generic class libraries

• For wrapping and executing a method which can be determined only at run time and not at compile time

• For defining anonymous methods (methods with no name) and executing the method using delegates

• For invoking both static method and instance method using a single delegate

7. object pooling : like checking for the connection and close the connection. Object pooling check for object , if object is not – create object

8. Exception handling :For handling Exception we will create a separate file,it can be stored in db or in text or mail or HTML file

10. Partial class (.NET Framework 2.0 supports PC) single class used in multiple files (by multiple users) at last generate as single class while execution.

11. Interface class which contains purely abstract methods

12 Abstract class are declared in Base class and implemented in derived class. And these class can contain normal classes also. It is not necessary to implement all the class in derived class unlike Interface. Abstract class can contain abstract methods, abstract property as well as other members (just like normal class).

13. Interface class are declared in Base class and implemented in derived class. But all the methods that are declared in base class should be implemented in derived class. . Interface can only contain abstract methods, properties but we don’t need to put abstract and public keyword. All the methods and properties defined in Interface are by default public and abstract.

12. Serialization : if we are declaring a class as Serialization class and declaring a variable called name and creating a object in a form and assigning a value to a variable and we can get that value in another form by de-Serialization that object.

In class

[Serializable]

public class MyObject {

 public int n1 = 0;

 public int n2 = 0;

 public String str = null;

}

In form1

MyObject obj = new MyObject();

obj.n1 = 1;

obj.n2 = 24;

obj.str = "Some String";

IFormatter formatter = new BinaryFormatter();

Stream stream = new FileStream("MyFile.bin",

 FileMode.Create,

 FileAccess.Write, FileShare.None);

formatter.Serialize(stream, obj);

stream.Close();

In form2 (De-serialize)

Formatter formatter = new BinaryFormatter();

Stream stream = new FileStream("MyFile.bin",

 FileMode.Open,

 FileAccess.Read,

 FileShare.Read);

MyObject obj = (MyObject) formatter.Deserialize(fromStream);

stream.Close();

// Here's the proof

Console.WriteLine("n1: {0}", obj.n1);

Console.WriteLine("n2: {0}", obj.n2);

Console.WriteLine("str: {0}", obj.str);

13. Reflection : mechanism for accessing meta data.

14. Page life cycle of aspx

16. debugging tools : CorDBG.exe - command-line debugger, you can access it from SDK Command Prompt

17. define: wpf, wcf

18. oops concepts with examples where you have implemented in your project

19. Data reader, execute scalar

20. Assemblies, DLL, namespace, shared assemblies

21. Sealed class : dos not allow to derive in derived class.

22. How to debug javascript

23. jagged :array of array

24. diffgram : one of the form to represent of XML schema

25. difference between postback & callback: postback entire round trip to the server

26. without adapter how to get data from db (using xml)

27. bulk insert using xml

29. difference between string.equals & == : 1st differs in value type and reference type , behaves differently

30. Implementing MVC pattern in ASP.NET?

The main purpose using MVC pattern is to decouple the GUI from the Data. It also gives the ability to provide multiple views for the same Data. MVC pattern separates objects in to three important sections:-

Model: - This section is specially for maintaining data. It is actually where your business logic, querying database, database connection etc. is actually implemented.

Views: - Displaying all or some portion of data, or probably different view of data. View is responsible for look and feel, Sorting, formatting etc.

Controller: - They are event handling section which affects either the model or the view. Controller responds to the mouse or keyboard input to command model and view to change. Controllers are associated with views. User interaction triggers the events to change the model, which in turn calls some methods of model to update its state to notify other registered views to refresh their display.

Following are the various sections of ASP.NET which maps to MVC sections:-

Model: - This section is represented by Data view, Dataset, Typed Dataset, Business components, business entity models etc. Now this section can then be tied up to either windows application or web UI.

View: - ASPX, ASCX, or windows application UI like data grid etc. form the view part of it.

Controller: - In ASP.NET the behind code is the controller as the events are handled by that part. Controller communicates both with Model as well as view.

Model tells the state ODF an application, view in user interface , control – intracts with the interface and update the model

31. difference between string.concat & "+" operator : 1st → 1st string memory. 2nd new memory.

32. difference between for & foreach

33. Can we specify access modifiers for methods in interface? if no means, y?

34. difference between C# 2.0 anonymous methods and C# 3.0 lambda expressions

35. Web service are business logic units/components create in common place and access Via http protocol. Parameter can be sent thru query string

35.a) Choosing a Web Service or .Net Remoting in projects?

Well Web services uses .Net remoting concepts internally. But the major difference between web service and .net remoting is that “web service” can be consumed by clients who are not .NET platform. While remoting you need the client to be .NET compliant.

Regarding the speed issue ".net Remoting" is faster than “Web Services”. So I think when deciding the architecture side of choosing between “Web services” and “.NET Remoting” keep the cross platform issue and the speed issue in mind.

36.Metrics:

Schedule Variation: Difference between Actual duration and planned duration (date)

Effort Variation: between Actual and planned Effort (hours)

35. Generics : Allows to create class that are parameterized by type.

36. Assemblies are physical files that contains complied code

.exe -> stand alone application

.dll reusable components.

38. Boxing : Converting value type into reference type.

39. New features in .Net framework 3.5?

new features added in .NET Framework 3.0. For example, feature sets in Windows Workflow Foundation (WF), Windows Communication Foundation (WCF), Windows Presentation Foundation (WPF) and Windows CardSpace.

In addition, .NET Framework 3.5 contains a number of new features in several technology areas which have been added as new assemblies to avoid breaking changes. They include the following:

Deep integration of Language Integrated Query (LINQ) and data awareness. This new feature will let you write code written in LINQ-enabled languages to filter, enumerate, and create projections of several types of SQL data, collections, XML, and DataSets by using the same syntax.

ASP.NET AJAX lets you create more efficient, more interactive, and highly-personalized Web experiences that work across all the most popular browsers.
New Web protocol support for building WCF services including AJAX, JSON, REST, POX, RSS, ATOM, and several new WS-* standards.

Full tooling support in Visual Studio 2008 for WF, WCF, and WPF, including the new workflow-enabled services technology.

New classes in .NET Framework 3.5 base class library (BCL) that address many common customer requests.

Note: WCF use for not only windows application project it will work for web application project also

39) LINQ (): it act as a bridge between db and application. Every thing will be access like an object, so migration of db is easy.

40) Nhibernate - java
40. Difference between DataSet and DataReader?
DataSet is a disconnected architecture, while DataReader has live connection while reading data. If we want to cache data and pass to a different tier DataSet forms the best choice and it has decent XML support.

When application needs to access data from more than one table DataSet forms the best choice.

If we need to move back while reading records, datareader does not support this functionality.

One of the biggest drawbacks of DataSet is speed. As DataSet carry considerable overhead because of relations, multiple tables etc speed is slower than DataReader. Always try to use DataReader wherever possible, as it’s meant specially for speed performance.

41. Array vs HashTable

An array is a collection of data, where each data item (element) has to be the the same data type. Array elements are allocated consecutively in the same memory space and are indexed via an integer index.

Hash table is a data structure that provides lookup semantics via an object key. Typically the key is a string, however under .NET, it can be any Object and particualy objects that provide a decent override of the Base Objects GetHashCode() function. A hash code is an algorithically generated id that should make an object key distinct.

For instance under .NET, arrays are objects that derive from the base Array class and implement IEnumerable so that array elements can be enumerated with a For-Each loop.

Hash tables hold a collection of DictionaryEntry objects, where a DictionaryEntry holds the Key along with its value.

In another words hash table is derived from the CollectionBase class. Array is the base class of system.object.array is reference type. which is identified with the position of array for both insertion and retreival. But the HashTable is stored the data with unique key which helps to refer the data.

42. How to manage state in Asp.Net Web applications?

State management is done at client side and server side
Client Side: Client Side it can achieved with the help of View state, Cookies, Query String,hidden fields and control state.
Server Side: with the help of Cache, Application,Session and Database.

43.What is the purpose of IIS ? ASp.Net Interview

We can call IIS (Internet Information Services) a powerful Web server that helps us creating highly reliable, scalable and manageable infrastructure for Web application which runs on Windows Server 2003. IIS helps development center and increase Web site and application availability while lowering system administration costs. It also runs on Windows NT/2000 platforms and also for above versions. With IIS, Microsoft includes a set of programs for building and administering Web sites, a search engine, and support for writing Web-based applications that access database. IIS also called http server since it process the http request and gets http response.

44. what is connection pooling?

Connecting to a database is the single slowest operation inside a data centric application. That’s why managing connections through connection pooling is important to application performance. Connection pooling allows you to reuse connections rather than create a new one every time the ADO.NET data provider needs to establish a connection to the underlying database.

You can control connection pooling behavior by using connection string options (see the documentation for your data provider). For example, for most ADO.NET data providers, you can define the number of connection pools, the number of connections in a pool, and the lifetime of pooled connections used by each process.

Each connection pool is associated with a specific connection string. By default, the connection pool is created when the first connection with a unique connection string connects to the database. The pool is populated with connections up to the minimum pool size. Additional connections can be added until the pool reaches the maximum pool size.

The pool remains active as long as any connections remain open, either in the pool or used by an application with a reference to a Connection object that has an open connection.

If a new connection is opened and the connection string does not exactly match an existing pool, a new pool must be created. By using the same connection string, you can enhance the performance and scalability of your application.

The connection string with the pooling related keywords would look somewhat like this

initial catalog=Northwind; Data Source=localhost; Connection Timeout=30;
User Id=MYUSER; Password=PASSWORD; Min Pool Size=20; Max Pool Size=200;
Incr Pool Size=10; Decr Pool Size=5;

45. Dynamic web pages life cycle in Web Application? A dynamic web page is an HTML document generated by a web application. Often, the Web page changes according to information sent to the Web application by the browser. When a Web server receives a request for a dynamic web page, the server passes the request to an application server. The application server executes the Web application, which generates an HTML document. This document is returned to the application server, which passes it back to the web server. The Web server, in turn, sends the document back to the browser.

After the page is displayed, the user can interact with it using its controls. Some of those controls let the user post the page back to the server, so it’s processed again using the data the user entered.

I think Page life cycle should include the sequence of function execution like page_init page_load

46) Difference between class and interface in C#?

A C# Class Considered being the primary building block of the language. What I mean by the primary building block of the language is that every time you work with C# you will create Classes to form a program. We use Classes as a template to put the properties and functionalities or behaviors in one building block for some group of objects and after that we use that template to create the objects we need.

A class can contain declarations of the following members:

Constructors, Destructors, Constants, Fields, Methods, Properties,Indexers, Operators, Events, Delegates, Classes, Interfaces, Structure

An interface contains only the signatures of methods, delegates or events. The implementation of the methods is done in the class that implements the interface. A class that implements an interface can explicitly implement members of that interface. An explicitly implemented member cannot be accessed through a class instance, but only through an instance of the interface.

An interface can inherit from one or more base interfaces. When a base type list contains a base class and interfaces, the base class must come first in the list.

interface ISampleInterface
{
 void SampleMethod();
}

class ImplementationClass : ISampleInterface
{
 // Explicit interface member implementation:
 void ISampleInterface.SampleMethod()
 {
 // Method implementation.
 }

 static void Main()
 {
 // Declare an interface instance.
 ISampleInterface obj = new ImplementationClass();

 // Call the member.
 obj.SampleMethod();
 }
}

47)What data types do the RangeValidator control support?

RangeValidator control supports Integer, String, Date.Double and Currency data type in in ASP.NET web forms

48) what is url mapping explain with example.

URL mapping - a feature new to ASP.NET 2.0 - enables page developers to map one set of URLs to another. If a request comes in for one of the URLs in the first set, it is automatically re-mapped on the server-side.

For example, you can configure the application so that the URL ~/Beverages.aspx is mapped to ~/ProductsByCategory.aspx?CategoryID=1&CategoryName=Beverages. With such a mapping in place, when a user enters http://YourSite.com/Beverages.aspx into their browser's Address bar, on the server-side the request will be handled as if they had entered http://YourSite.com/ProductsByCategory.aspx?CategoryID=1&CategoryName=Beverages. The user, however, will continue to see http://YourSite.com/Beverages.aspx in their browser's Address bar; they won't know that the request was re-mapped.

49)

Web.config file in ASP.NET, as it sounds like is a configuration file for the Asp .net web application. An Asp .net application has one web.config file which keeps the configurations required for the corresponding application. Web.config file is written in XML with specific tags having specific meanings.

Generally we store database connections, Session States, Error Handling, Security configurations in ASP.NET web.Config file.

Multiple configuration files, all named Web.config, can appear in multiple directories on an ASP.NET Web application server. Each Web.config file applies configuration settings to its own directory and all child directories below it. Configuration files in child directories can supply configuration information in addition to that inherited from parent directories, and the child directory configuration settings can override or modify settings defined in parent directories. The root configuration file named systemroot\Microsoft.NET\Framework\versionNumber\CONFIG\Machine.config provides ASP.NET configuration settings for the entire Web server.

50) Difference between Server.Transfer and Response.Redirect in ASP.NET

Server.Transfer transfers page processing from one page directly to the next page without making a round-trip back to the client's browser. This provides a faster response with a little less overhead on the server. Server.Transfer does not update the clients url history list or current url.

Response.Redirect is used to redirect the user's browser to another page or site. This performas a trip back to the client where the client's browser is redirected to the new page. The user's browser history list is updated to reflect the new address.

a.we can say that in Server.Transfer("URL") we can pass only that path name which is exist in the current b.website.where as Response.Redirect("URL") take any url address they may be in current website on not .

51) What is LINQ?

LINQ stands for language-integrated query with that query becomes an integrated feature of the developer's primary programming languages (for example, Visual C#, Visual Basic).

Language-integrated query allows query expressions to benefit from the rich metadata, compile-time syntax checking, static typing and IntelliSense that was previously available only to imperative code. Language-integrated query also allows a single general purpose declarative query facility to be applied to all in-memory information, not just information from external sources.

52) a.Authentication is the process of identification and validation of a user's credentials. After the identity is authenticated, a process called authorization determines whether that identity has access to a particular resource. This article discusses both these concepts in detail.

b.Authentication and Authorization are two interrelated concepts, which form the core of security for .NET applications. The authentication and authorization processes in ASP.NET are very flexible, simple and can be implemented in the code. ASP.NET is not a standalone product; it is linked with IIS and is, in fact, a layer on top of IIS. So, any request that comes into the ASP.NET process is first authenticated and authorized by IIS. In short, the ASP.NET process is completely unaware if any user has been denied access to any page by IIS. Several security authorities interact when the user raises a request for an ASP.NET page. You must get to know how these processes work in order to fully understand the ASP.NET system.

52) What is the difference between the String and StringBuffer classes? String objects are constants. StringBuffer objects are not.

53) Best Web Browsers:-

· FIREFOX/CAMINO/K-MELEON [59.16%]

· OPERA [20.42%]

· INTERNET EXPLORER [11.52%]

· MOZILLA SUITE [3.66%]

· GOOGLE CHROME [1.05%]

· NETSCAPE [1.05%]

· KHTML (KONQUEROR, SAFARI, OMNIWEB 4.5+) [1.05%]

· A SKIN OF INTERNET EXPLORER [0.52%]

· ANY OTHER (YEA, THERE ARE MORE!) [1.57%]

· OMNIWEB [0%]

Access Modifiers :

a. Private :

b. Public :

c. Protected”

d. Internal

e. Protected Internal

54) which method is best to clear the object dispose or finalize

cmdGrid.Dispose() is best cos , it clears at the spot once. But “finalize” will go second time to heap to see the objects to be cleared.

55) A Postback occurs when the data (the whole page) on the page is posted from the client to the server..ie the data is posted-back to the server, and thus the page is refreshed (redrawn)...think of it as 'sending the server the whole page (asp.net) full of data'.

On the other hand, a callback is also a special kind of postback, but it is just a quick round-trip to the server to get a small set of data (normally), and thus the page is not refreshed, unlike with the postback...think of it as 'calling the server, and receiving some data back'

With Asp.Net, the ViewState is not refreshed when a callback is invoked, unlike with a postback.

The reason that the whole page is posted with ASP.Net is because ASP.Net encloses the whole page in a <form> with a post method, and so when a submit button is clicked in the page, the form is sent ot the server with all of the fields that are in the form...basically the whole page itself

If you are using FireBug (for Firefox), you can actually see callbacks being invoked to the server in theConsole. That way, you will see what specific data is being sent to the server (Request) and also the data the server sent you back (Response)

56) Assemblies : Physical files that contains the compiled code. Collection of dll's.

57) vALUE TYPE : Copy of the data. If you are passing parameter as reference type means the value of original variable will be effected. If we change anything in the method.

58) reference type : If you are passing parameter as reference type means the value of original variable will be effected. If we change anything in the method.

3. Anonymous methods :

I) As you may know, if the caller want to respond to any event, it must create a method -(event handler) that matches the signature of it's associated delegate. Such method is only called by the event associated delegate object.

ii) The introduction of anonymous methods in C# 2.0 gives developers the ability to efficiently design code that makes use of delegates in callback situations. Prior to this language enhancement, a developer would have to define a separate method when needing to execute a callback using a delegate. Indeed, while not having to define a separate method to execute callbacks is certainly a nicety, that reason alone does not fully qualify the value of a new language feature such as anonymous methods. As we will see in the Web Resource Information Reader sample, the real benefit of anonymous methods can be seen in the flexibility it offers developers by allowing them to execute callbacks, synchronously or asynchronously, within its containing method code. When using anonymous methods, a developer can still reference local variables scoped for the containing method from within the anonymous method definition. Let's get started by showing how anonymous method in C# 2.0 has changed the way code can be written for callback situations.

Example :A simple example uses events. Consider the Application.ApplicationExit event that is raised when a Windows Forms application is closed. In .NET 1.1, one would have to define a method matching the System.EventHandler delegate signature and then attach that to the ApplicationExit event as such:

 public MainForm()

 {

 InitializeComponent();

 Application.ApplicationExit += new EventHandler(Application_ApplicationExit);

 }

 public void Application_ApplicationExit(object sender, EventArgs args)

 {

 // Do something before the application closes.

 }

The same code can be written as an in-line, anonymous method:

 public MainForm()

 {

 InitializeComponent();

 Application.ApplicationExit +=

 delegate(object sender, EventArgs args)

 {

 // Do something before the application closes.

 };

 }

As you can see, the syntax in the second part of the example saves us from having to define a separate, stand-alone method. This is the most obvious benefit of anonymous methods, but aside from aesthetics, it offers little real benefit to a developer. Now we will take a look at a more practical example that demonstrates what I consider to be a more important benefit of anonymous methods. One of the most useful implementations of this new language feature can be seen in some of the generic collection types, including the new List<T> class. List<T> is decorated with several static methods such as Exists, Find, FindAll, Remove, and RemoveAll, all of which accept a Predicate delegate (Predicate is generic delegate that has bool as its return type).

LINQ Lists - Anonymous Methods and Lambda Expressions

Year: 2005 A.D.
The C# 2.0 specification is released in the month of September. It talks about "new" features. We were introduced with a new "in-line" feature of using delegates. We called it "Anonymous Methods". Needless to say, its named as such because:
- Its Anonymous (no method name is given)
- Its InLine (How can you call something without a name, makes sense doesn't it?)

Year: 2006 A.D.
The C# 3.0 specification is released in the month of May. It talks about new features. Among a number of path breaking innovative ideas, we have something called "Lambda Expressions". It claims to provide more concise, functional syntax for writing anonymous methods.

Lets checkout the basic syntax of Anonymous Methods:

The best example of an anonymous method is when a delegate is used as an Event Handler:

Without Anonymous:

MyButton.Click += new EventHandler(MyButtonClicked);

void MyButtonClicked(object sender, EventArgs e)

{

MessageBox.Show("Hello World!");

}

With Anonymous

MyButton.Click += delegate{

MessageBox.Show("Hello World!");

}

From the above comparison, you can make out that using InLine Functions, we do not need to:
- pass arguments across functions.
- you can use the scope level variables easily.
But, it has tradeoffs which involve code readability and reusability hassles. As the age old saying goes about InLine Functions: Use it efficiently, as its faster than calling functions but slightly difficult to manage.

class Program

{

 static void Main(string[] args)

 {

 List<Vehicle> vlist = new List<Vehicle>

 {

 new Vehicle{Make="Mercedes", Model="Benz", Mileage=12},

 new Vehicle{Make="Renault", Model="Logan", Mileage=15},

 new Vehicle{Make="Honda", Model="Accord", Mileage=12},

 };

 IEnumerable<Vehicle> vehicles = vlist.Where(v => v.Mileage > 10);

 foreach (Vehicle v in vehicles)

 {

 Console.WriteLine(v.Make);

 Console.WriteLine(v.Model);

 Console.WriteLine(v.Mileage);

 Console.WriteLine("-----------------");

 }

 Console.Read();

 }

}

public class Vehicle

{

 public string Make;

 public string Model;

 public int Mileage;

}

In the above example:
IEnumerable<Vehicle> vehicles = vlist.Where(v => v.Mileage > 10);

The Lambda Expression:
v => v.Mileage > 10

replaces:
new delegate(Vehicle v){
v.Mileage > 10;
}

It can also be replaced by:

IEnumerable<Vehicle> vehicles = from v in vlist

where v.Mileage > 12

 select v;

10. Partial classes:

a.This is a very powerful tool made available to developers. It allows you to have multiple pieces of a class definition. Functionally, partial classes are not at all different from classes written as full classes. Which means you can have one single class definition or a class written as a few distinct parts, so you need not worry about partial classes breaking existing functionality.

If you've done any ASP.NET work since 2.0 you've probably already seen partial classes. Perhaps you did not know you were working with them, but with ASP.NET sites every page created is actually using partial classes. The other part of the partial class is created from the .aspx file.

b. Consider the scenario when two or more developer wanted to write the code in the same class.and wanted to access same file because earlier one class can not be in two files.

To overcome this situation Partial class is introduced..where two or more developer can write the code in the same class but could be in different file.

Using Partial class logically it will considered one class but could be in multiple files.

c.Using Partial Classes
Listing 1 contains two class definitions written in VB.NET, with the second class definition starting with the partial keyword. Both class definitions may reside in two different physical files. Functionally, Listing 1 is equivalent to Listing 2.

Listing 1

'---File1.vb---

Public Class Class1

 Public Sub method1()

 End Sub

End Class

File2.vb

Partial Public Class Class1

 Public Sub method2()

 End Sub

End Class

Listing 2

'---File1.vb---

 Public Class Class1

 Public Sub method1()

 End Sub

 Public Sub method2()

 End Sub

 End Class

Here are some good reasons to use partial classes:

a) They allow programmers on your team to work on different parts of a class without needing to share the same physical file. While this is useful for projects that involve big class files, be wary: If you find your class file getting too large, it may well signal a design fault and refactoring may be required.

b)The most compelling reason for using partial class is to separate your application business logic from the designer-generated code. For example, the code generated by Visual Studio 2005 for a Windows Form is kept separate from your business logic (we will discuss this in a later section). This will prevent developers from messing with the code that is used for the UI. At the same time, it will prevent you from losing your changes to the designer-generated code when you change the UI.

14)Abstract classes are one of the essential behaviors provided by .NET. Commonly, you would like to make classes that only represent base classes, and don�t want anyone to create objects of these class types. You can make use of abstract classes to implement such functionality in C# using the modifier 'abstract'.

An abstract class means that, no object of this class can be instantiated, but can make derivations of this.

abstract class absClass

{

}

An abstract class can contain either abstract methods or non abstract methods. Abstract members do not have any implementation in the abstract class, but the same has to be provided in its derived class.

An example of an abstract method:

abstract class absClass

{

 public void NonAbstractMethod()

 {

 Console.WriteLine("NonAbstract Method");

 }

}

using System;

namespace abstractSample

{

 //Creating an Abstract Class

 abstract class absClass

 {

 //A Non abstract method

 public int AddTwoNumbers(int Num1, int Num2)

 {

 return Num1 + Num2;

 }

 //An abstract method, to be

 //overridden in derived class

 public abstract int MultiplyTwoNumbers(int Num1, int Num2);

 }

 //A Child Class of absClass

 class absDerived:absClass

 {

 [STAThread]

 static void Main(string[] args)

 {

 //You can create an

 //instance of the derived class

 absDerived calculate = new absDerived();

 int added = calculate.AddTwoNumbers(10,20);

 int multiplied = calculate.MultiplyTwoNumbers(10,20);

 Console.WriteLine("Added : {0},

 Multiplied : {1}", added, multiplied);

 }

 //using override keyword,

 //implementing the abstract method

 //MultiplyTwoNumbers

 public override int MultiplyTwoNumbers(int Num1, int Num2)

 {

 return Num1 * Num2;

 }

 }

}

In the above sample, you can see that the abstract class absClass contains two methods AddTwoNumbers and MultiplyTwoNumbers. AddTwoNumbers is a non-abstract method which contains implementation and MultiplyTwoNumbers is an abstract method that does not contain implementation.

The class absDerived is derived from absClass and the MultiplyTwoNumbers is implemented on absDerived. Within the Main, an instance (calculate) of the absDerived is created, and calls AddTwoNumbers and MultiplyTwoNumbers. You can derive an abstract class from another abstract class. In that case, in the child class it is optional to make the implementation of the abstract methods of the parent class.

Example

59) What is Web config. And Purpose

60) What are the ways that you can sent parameter to WebService

61) What is Cross Post Back

 getting Value from previous page

Bosch

1Can we have multiple inheritance in C# or Why you are using Interface

Yes through Interface

2.

3.What is Cache , Where , hoe use use in ur project

4.What are all the tool which are built in in VS 2008 for verifying code , code review etc

5.What are all the latest techniques ur going to add in ur upcoming project or what are the techniques you know in 3.5 frame work

LINQ

Difference between ASP.Net 1.1 & ASP.Net 2.0

 ASP.Net 1.1
ASP.Net 2.0

The traditional workaround alternatives were to use Response.Redirect and/or Server.Transfer to move to a different page and simulate cross page post-back behavior
To set a web form to post back to a different web form, in the source web form, set the PostBackURL property of a control that implements IButtonControl (eg. Button, ImageButton, LinkButton) to the target web form. When the user clicks on this button control, the web form is cross-posted to the target web form. No other settings or code is required in the source web form

Typed Dataset

Max length of Table Name in SQL Length?

How many inner join using in Single Query?

Trigger Type?

How many Maximum parameter passed in Store Procedure?

Visual Studio 2005,2008 inbuilt Crystal Report version No?

Asp.Net

1. Query String

2. Cookies

3. Session

4. Isolation Level

C#.Net

1.

OOPS

1. Early Binding, Late Binding. Using in your Application?

2. Mange Code, Unmanaged Code

3. CLR

4. Garbage Collector

5. Data Adapter Event Details?

6. Interfaces

7. Abstract Class?

8. How to Class inherit avoid?

9. Optional Argument in vb.net ? But is it in c#?

10. Multiple Inheritance in c#?

11. Typed Dataset

12. Command Type?

13. With using in VB.Net best or Not?

14. Ajax Toolkit?

15. Third party Tool?

Difference between VB.Net & C#?

Difference between C & C#.net?

Declare Class A, Class B, Class C;

Class B is Child of Class A ; Class C is Child of Class B now, method X is declared in Class A, that method can be access in class B, but that method can not have access permission in class C. So how to Declare Method X.

What is Namespace?

What is Caching? Types?

What is Modifier? Types?

Interface , Abstraction :

Interfaces

An interface is a reference type containing only abstract members. These can be events, indexers, methods or properties, but only the member declarations. A class implementing an interface must provide the implementation of the interface members. An interface cannot contain constants, constructors, data fields, destructors, static members or other interfaces. Interface member declarations are implicitly public.

[edit]

Declaration

[attributes] [modifiers]

 interface identifier [:base-type[,]]

{

 body [;]

}

The attributes is optional and is used to hold additional declarative information.

The modifier is optional. The allowed modifiers are public and internal, unless nested inside a class, then the allowed modifiers are public, protected, private and internal. If no modifier is supplied then a default of internal is used.

The keyword interface must be followed by an identifier that names the interface.

The base-type of an interface can be zero or more interfaces. When more than one base-type is used, then this is a comma-separated list of base-types.

The body contains the member declarations.

[edit]

Implementation

An interface is defined using the keyword interface. It is common practice to start all interface names with a capital I. For example:

public interface IVehicle

{

 void Start();

 void Drive();

 void Park();

 void ChangeGear(int gear);

 void SwitchOff();

}

In order to implement the interface, every method must be implemented in the class, else a compiler error will ensue.

public class Vehicle : IVehicle

{

 public void Start()

 {

 Console.WriteLine("The vehicle has been started");

 }

 public void Drive()

 {

 Console.WriteLine("The vehicle is being driven");

 }

 public void Park()

 {

 Console.WriteLine("The vehicle is being parked");

 }

 public void ChangeGear(int gear)

 {

 Console.WriteLine("Gear changed to " + gear.ToString());

 }

 public void SwitchOff()

 {

 Console.WriteLine("The vehicle has been switched off");

 }

}

If a class implements more that one interface and the two interfaces have methods named the same, then each method must be implemented unless they have the same definition in which case only one implementation is needed to implement the methods.

Here is a sample application (written in C# Express) showing the code above.

More information can be found in the 70-536 section - Implement .NET Framework interfaces - including how to get Visual Studio to fill in most of the code for you.

[edit]

Abstract classes

Like an interface, you cannot implement an instance of an abstract class, however you can implement methods, fields, and properties in the abstract class that can be used by the child class.

For example, we could create an abstract class for all vehicle to inherit from:

public abstract class Vehicle

{

 public void Start()

 {

 Console.WriteLine("The vehicle has been started");

 }

 public abstract void Drive();

 public abstract void Park();

 public abstract void ChangeGear(int gear);

 public void SwitchOff()

 {

 Console.WriteLine("The vehicle has been switched off");

 }

}

So each class that inherits from Vehicle will already be able to use the methods Start and SwitchOff, but they must implement Drive, Park and ChangeGear.

So if we were to implement a Car class, it may look something like this.

public class Car: Vehicle

{

 public Car()

 {

 }

 public override void Drive()

 {

 Console.WriteLine("The car is being driven");

 }

 public override void Park()

 {

 Console.WriteLine("The car is being parked");

 }

 public override void ChangeGear(int gear)

 {

 Console.WriteLine("The car changed gear changed to " + gear.ToString());

 }

}

The override keyword tells the compiler that this method was defined in the base class.

Summary

· An Interface cannot implement methods.

· An abstract class can implement methods.

· An Interface can only inherit from another Interface.

· An abstract class can inherit from a class and one or more interfaces.

· An Interface cannot contain fields.

· An abstract class can contain fields.

· An Interface can contain property definitions.

· An abstract class can implement a property.

· An Interface cannot contain constructors or destructors.

· An abstract class can contain constructors or destructors.

· An Interface can be inherited from by structures.

· An abstract class cannot be inherited from by structures.

· An Interface can support multiple inheritance.

· An abstract class cannot support multiple inheritance.

Generic

Allow to create a class that are parameterized Type

The generic concept is not only used in ASP.Net it is used to create generic objects,

to avoid the boxing unboxing and the conversion errors at the run time

Sample :

using System;

using System.Collections.Generic;

 class Test

 {

 static void Main(string[] args)

 {

 Test t = new Test();

 int[] integerArray = {1,2,3,4,5,6};

 char[] characterArray = { 'J', 'O', 'Y', 'D', 'I','P' };

 double[] doubleArray = {0.1,0.2,0.3,0.4,0.5,0.6};

 Console.WriteLine("Displaying the contents of the integer array:--");

 t.Display(integerArray);

 Console.WriteLine("Displaying the contents of the character array:--");

 t.Display(characterArray);

 Console.WriteLine("Displaying the contents of the double array:--");

 t.Display(doubleArray);

 }

 public void Display< GenericArray >(GenericArray[] array)

 {

 for (int i = 0; i< array.Length; i++)

 Console.WriteLine(array[i]);

 }

 }

The following points sum up the basic advantages of using Generics.

· Code Efficiency

· Enhanced performance

· Type Safety and reliability

· Maintainability of code

http://www.codeproject.com/KB/WCF/generic_wcf_host.aspx

Array:

Collation of data in simillar type called as Arraay.

Size is Difined.

Array List :

Array List Collation of data in simillar type at dynamicly added called as Array List.

Hash Table :

It is using Indexof so, It fast compare to Array List.

